6 research outputs found

    Polynomial-time approximation schemes for scheduling problems with time lags

    Get PDF
    We identify two classes of machine scheduling problems with time lags that possess Polynomial-Time Approximation Schemes (PTASs). These classes together, one for minimizing makespan and one for minimizing total completion time, include many well-studied time lag scheduling problems. The running times of these approximation schemes are polynomial in the number of jobs, but exponential in the number of machines and the ratio between the largest time lag and the smallest positive operation time. These classes constitute the first PTAS results for scheduling problems with time lags

    Integrality Property in Preemptive Parallel Machine Scheduling

    No full text
    We consider parallel machine scheduling problems with identical machines and preemption allowed. It is shown that every such problem with chain precedence constraints and release dates and an integer-concave objective function satisfies the following integrality property: for any problem instance with integral data there exists an optimal schedule where all interruptions occur at integral dates. As a straightforward consequence of this result, for a wide class of scheduling problems with unit processing times a so-called preemption redundancy property is valid. This means that every such preemptive scheduling problem is equivalent to its non-preemptive counterpart from the viewpoint of both its optimum value and the problem complexity. The equivalence provides new and simpler proofs for some known complexity results and closes a few open questions
    corecore